

L'Ancresse Bay

Discussion of Future Management

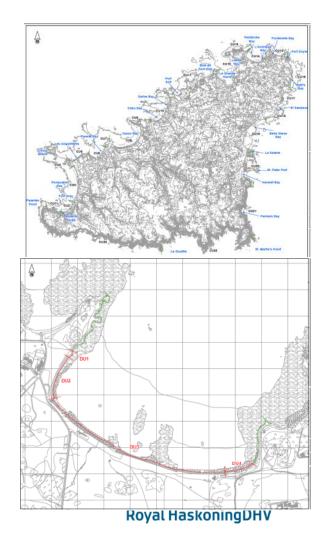
Gregor Guthrie, Alastair McMillan 12 June 2017

Terms

- Beach Nourishment addition of sediment (sand or pebbles) to a beach to increase the level of the beach.
- Width area of the beach between low and high water mark (i.e. the intertidal zone).
- Scour the force of the tide and waves reflected by a structure causes the removal of sand and sediment from the base of the structure, because the sea is not able to flow to it's full extent.
- Undermining erosion at the base of a structure resulting in excavation beneath the structure so as to make it collapse.
- **Toe** a protective structure at the base of a sea wall to provide additional stability.
- Accretion slow addition of water-borne and wind-borne sediment to existing land.
- Rock Revetment a large sloping structure using stones of a significant weight (3t+). This absorbs wave energy, reducing wave action against a structure and wave overtopping.

Coastal Management is fundamentally about managing change

- Examining the issues and concerns
- Examining the behaviour of the shoreline
- Considering options for management
- Developing the best way forward
 - At L'Ancresse East:
 - Significant issues with erosion
 - Deterioration of the beach
 - Failing wall
 - Longer term issues of sea level rise


Area of study

Background to Pembroke Bay

The 2007 Guernsey Coastal Defence Strategy followed on from the Coastal Defence Review in 1999.

The Strategy recommended:

- Defence inspection
- Regular monitoring
- Re-assess flood risk
- Consultation on the preferred option for future management (commenced after 2012 Flood Risk Assessment Studies)

2007 Options for Pembroke Bay

The table below summarises the options put forward for Pembroke in the 2007 Guernsey Coastal Defence Strategy:

Option	Technical Appraisal	Environmental Appraisal	Economic Appraisal
1 major repairs and rebuilding	 ensures integrity of defences long-term commitment to toe strengthening 	historic significance of defences	not viable
2 beach nourishment	ensures integrity of defencesprotects toe of wall	detrimental impacts on environmental interestsenhances beaches	not viable
3 beach nourishment detached breakwaters	 ensures integrity of defences protects toe of wall 	 detrimental impacts on environmental interests enhances beaches visual intrusion 	not viable
4 managed realignment dune creation	unlikely to significantly increase erosion	loss of historic defencesopportunity for habitat creation	not viable in the absence of a broader management plan
Do Nothing	Loss of assets	loss of historic defencesopportunity for habitat creation	viable

These options were re-assessed and expanded in the 2012 Flood Risk Assessment Studies.

Pembroke Bay – management options

The Guernsey Coastal Defences – Flood Risk Assessment Studies 2012 (which took into account sea level rise associated with climate change) provided:

0.0 km

1.0 km

2.0 km

3.0 km

4.0 km

5014

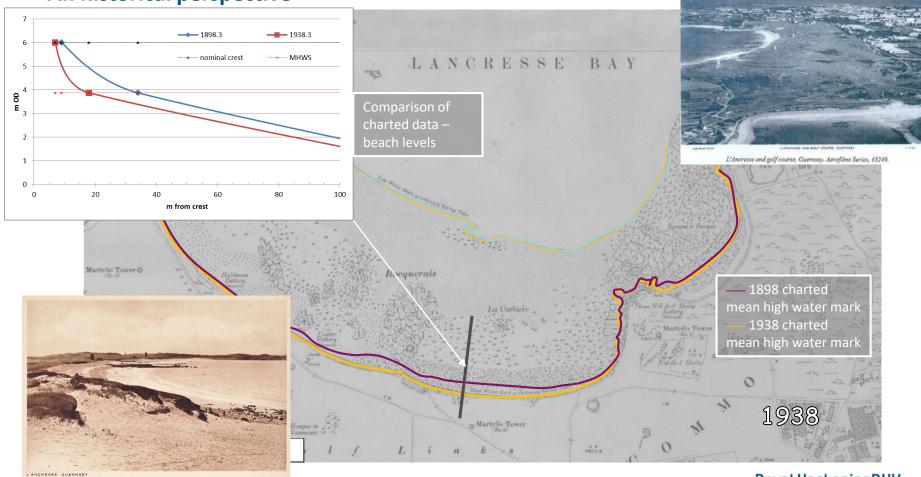
- Improved data
- Detailed analysis
- Options and costs
- Recommendations

Generating local wave climates

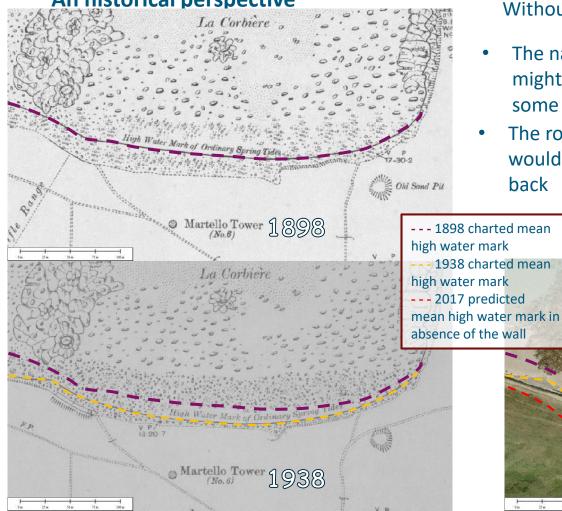
= Wave data point

Discussion of the problem

Toe falling away from the wall



Repair work being undermined


Wall moving

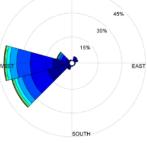
Wave action causing scour

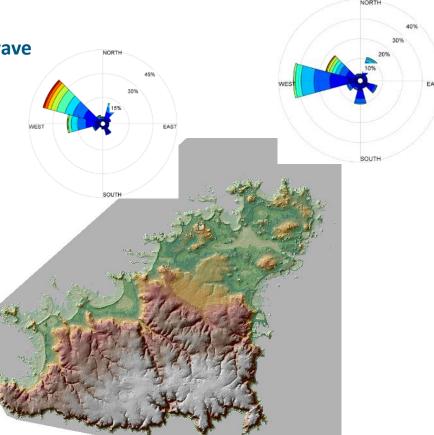
An historical perspective

An historical perspective

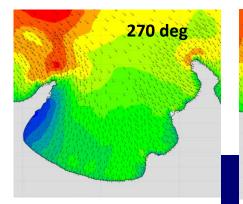
Without the wall:

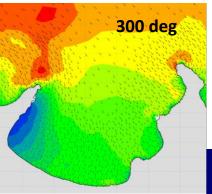
- The natural coastline might have set back some 30m
- The road to the carpark would have been set back
- The kiosk would not have been built where it has been built



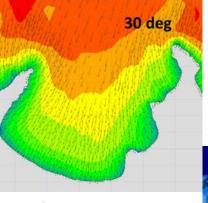


Analysis of the bay – Island Wave Rose Analysis


The length of each coloured spoke in the **directional wave roses** shown relate to the percentage of time that the waves arrive from that particular direction. Each concentric circle represents a different frequency, emanating from zero at the centre to increasing frequencies at the outer circles. Each spoke is broken down into color-coded bands that show wave height ranges.

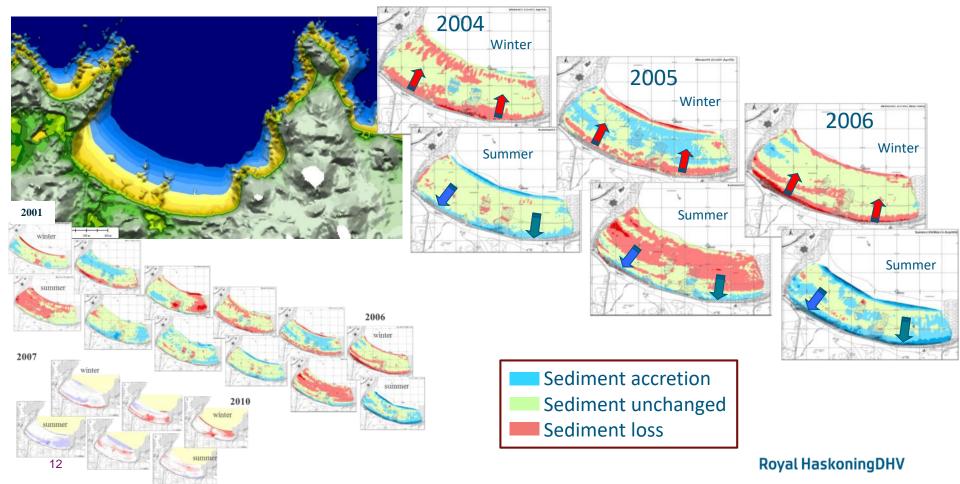


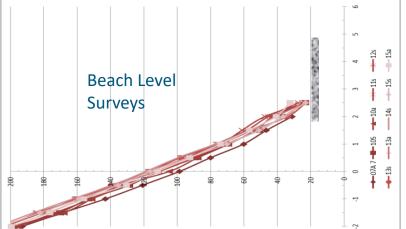
Analysis of the bay - L'Ancresse Wave Modelling

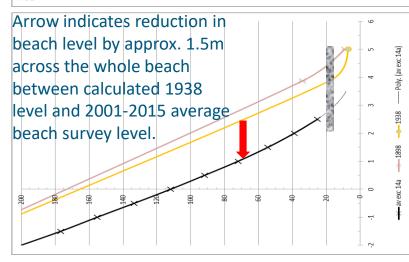


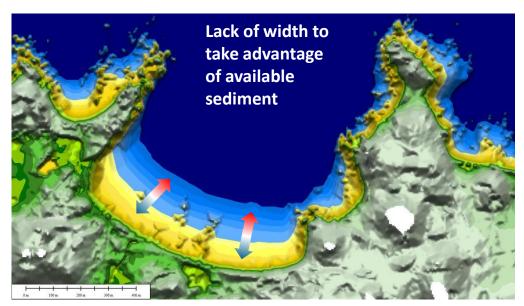
Western and middle sections of the bay have lower wave action.

Western end of the bay has lower wave action. Bay has more even wave action – still higher at eastern end.

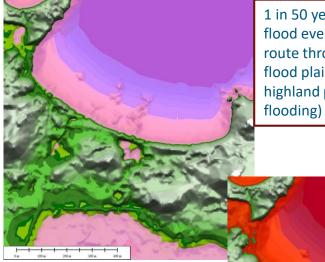

• Degrees indicated in the images below are the direction of waves taken clockwise from North



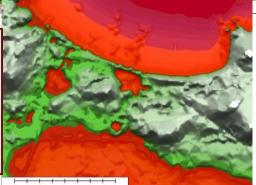

Waves travel along the wall to the eastern end

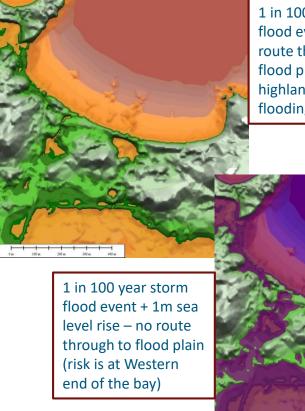

Analysis of beach behaviour – beach sand level monitoring since 2001

Analysis of beach behaviour



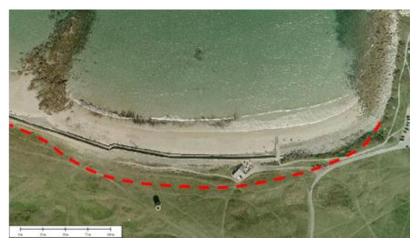
2012 Flood Risk Assessment Studies – No flood risk from Pembroke Bay


• Investigations modelled potential storm events (1 in 50 and 1 in 100 year events) and the effect of sea level rise. The modelling results are shown below.



1 in 50 year Storm flood event – no route through to flood plain (natural highland prevents flooding)

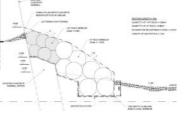
14



1 in 100 year storm flood event – no route through to flood plain (natural highland prevents flooding)

Do Nothing - walk away

- Health and safety issues closure of eastern beach
- Uncontrolled failure localised severe erosion closure of coastal path
- Loss of Kiosk
- Loss of slipway
- Longer term risk to road



1. Managing Do Nothing – removal of wall

£665,000

- 2. Maintain and improve typical repairs and rock toe.
 - Health and safety issues
 - Reactive management increased uncertainty
 - Potential to patch and repair for the next 25 years (i.e. further cost)

 putting off longer term management

- 3. Resist change full height of existing wall rock revetment
- Large impact on the upper beach will extend out from the existing wall in the order of 25m.
- Reduced amenity and access.
- Potential to provide 50 years defence.

£1,800,000

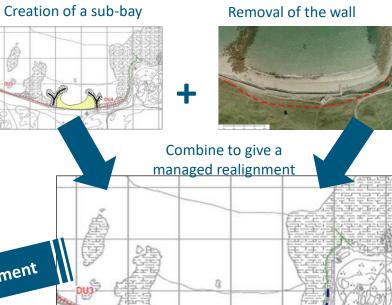
This option does not address the fundamental problem of lack of width

4. Modify beach behaviour – creation of a sub-bay

- Improves beach use
- Builds beach in front of the wall
- Potential to provide 50 years defence.

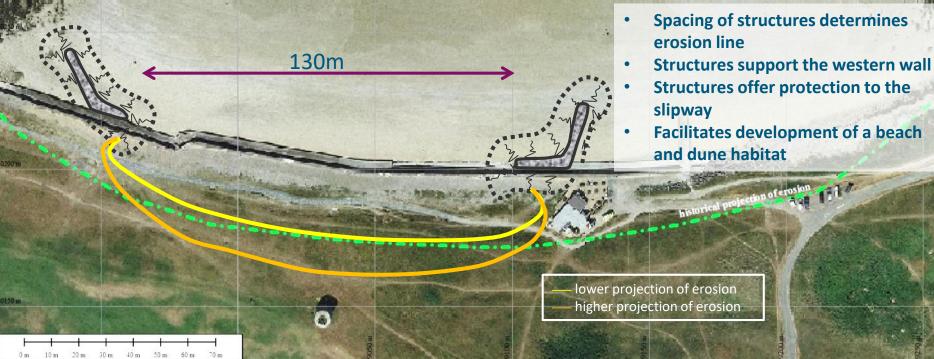
fa sub-bay. f2,700,000

Chosen Option


5. Creation of width – Managed realignment

- Limiting erosion
- Protection to slipway and eastern wall.
- Maintaining integrity of the western wall
- Enhanced amenity

£1,015,000


Option 7b from 2012 study Royal HaskoningDHV

Detail of the Development

Critical to this development:

- Further analysis of set back and design shape
- Discussions
- Timing in terms of deterioration of anti-tank wall

How the failing wall will be managed as part of the realignment:

- Structure emergency works so that material can be incorporated into the final design
- Investigate using part of the existing wall as material within the rock structures
- Establish the order in which to remove panels of the wall

Final development

- Set the framework for emergency works
- Develop potential options for staged delivery
- Consider options associated with the Kiosk

- Protection?
- Redesign the use of the area?

Establish control of the shoreline while moving towards a more adaptive approach.