APPENDIX 5 －ROOM SCHEDULES ADOPTED

 BBIO3．

APPENDIX 5.1 －Les Beaucamps Room Schedule

Table A5．I－Les Beaucamps Room Schedule
Table

Department	Room name	Room type	Room number	Area in m 2
CLassfoom	religious education 1	Classtoom	A3－01	\％
CLASSROOM Classfoom	relicious education 2	Classtoom	${ }_{\text {a }}^{\text {A3 }}$ A．04	${ }^{61}$
CLAASSROOM CLassRoom		Classroom	A3．05 A3．09	${ }_{61}^{61}$
classfoom	engish 3	Classroom	Аз－10	61
Classroom	engish 4	Classroom	${ }^{\text {A3－11 }}$	61
Classfoom	geograph 1	Classroom	${ }^{\text {A2 } 201}$	${ }^{61}$
Classfoom	geograph 2	Classroom	${ }^{\text {A2．} 202}$	${ }_{61}^{61}$
CLassroom	${ }_{\text {mil }}$	Classroom	A2．06	${ }^{61}$
CLASSROOM	${ }_{\substack{\text { mil }}}^{\text {mid }}$	Classroom	A2－09	
CLassioom	mil 4	Classsromm	${ }_{\text {A }}^{\text {A2 } 2-11}$	
classfoom	math 1	Classroom	A2．05	
Classfoom	math 2	Classroom	${ }^{\text {A2 } 2.51}$	
CLasshoom	math 3	Classroom	A2．52	
	${ }_{\substack{\text { matin } \\ \text { science }}}^{\text {a }}$	${ }_{\text {chem }}^{\text {Classroom }}$ Science Laboratry	${ }_{\text {A2－42 }}$	${ }_{91}^{61}$
${ }_{\text {ax }}^{0}$ SCIINCE	science 2	Science Laboratory	A2－40	91
皆 SCIENCE	science 3	Science Laboratory	${ }^{\text {A2 } 239}$	${ }^{97}$
Still	（science 4	Science Laboratory	${ }_{\text {a }}^{\text {A2 } 2.34}$	
${ }_{\text {IT }}$ LeAsshoo		ITroom	A2－23 A2	${ }_{90}$
1	ICT1	17 room	A2－27	${ }^{86}$
	${ }_{\text {ITT }}$ works	${ }_{\text {IT }}^{\substack{\text { Troom } \\ \text { Worshoo }}}$	AR25	75 105 10
${ }_{\text {DT }}^{\text {DT }}$	Workshop 1	Workshop	${ }_{\text {Al }}^{\text {Al－25 }}$	
DT－food	food technology	Food Room	Al－21 Al－01	$\begin{array}{r}124 \\ 116 \\ \hline 1\end{array}$
${ }^{\text {DT }}$	CDT hus space	Classroom	${ }^{\text {Al－19 }}$	92
DT	graphics room	Graphics room	${ }^{\text {Al－} 16}$	
${ }_{\text {ART }}^{\text {ART }}$	${ }_{3}^{2 d}$	${ }_{30}^{20}$ Arrststudio	A33．68 A3．64	103 99
music／drama	rectial	Music rectal	А 3.25	${ }^{89}$
music／DRama	classroom	Music classroom	А 3.26	
	drama studio	drama stucio	${ }^{\text {A3．34 }}$	118 2.689
HaLls	assembly hall		А ${ }^{\text {3 } 36}$	
Halls	gymmasium		${ }^{84} 8.27$	$\underset{\substack{241 \\ 592}}{ }$
${ }_{\substack{\text { HALLS } \\ \text { Hotal halls }}}^{\text {ate }}$	sports hall		${ }^{\text {B4／33 }}$	
	control room		A4．02	
LR	kilirroom		${ }^{\text {A3．} 65}$	10
$\stackrel{L R}{18}$	media studies		${ }_{\text {A }}^{\text {A3．}}$ A 48	$\begin{array}{r}70 \\ 102 \\ \hline\end{array}$
$\stackrel{L}{\text { LR }}$	${ }^{\text {loraray }}$ music grup	music pracice room 1	A3－51 A3－23	102
LR	music group	music practice room 2	${ }_{\text {A3．24 }}$	析
	music group	music practice room 3	${ }^{\text {A3．31 }}$	8
\％LR	${ }_{\text {music group }}^{\text {music grue }}$	music practice room 4 music racaicie room 5	A3－27 A3 30	
总 LR	music group	music pracitie room 6	АЗ－29	
\％LR	SENo fifice		${ }^{\text {A2 } 216}$	20
	${ }_{\substack{\text { SEN group room } \\ \text { group rom }}}$		${ }_{\text {A2 } 2 \text {－} 18}^{\text {A2 } 217}$	46 16 16
LR	beco		A2－19	9
LR	careers area		${ }^{\text {A2 } 23}$	0
$\stackrel{L R}{18}$	break out break out		${ }_{\text {a }}^{\text {A }}$ A2．12	（16
LR	brak out		${ }^{\text {A2 } 2.41}$	3
${ }_{18}^{\text {LR }}$	break out		${ }^{\text {A2－43 }}$	
Ltotal learning resource	niche＋display area			

D+S total dining and social	dining area $/$ canteen	Dining Area	А 3.37	160 160
SUPPL. SPorts.	swimming pool - 4 lane		${ }^{84.37}$	
ADD. AREA SCHOOL	reception waiting area		A4,16	
add. Area school	art mezzanine (digi.photo.)		АзМ-01	
add. Area school	staff mezzanine		A3M-02 $^{\text {a }}$	
AdD. AREA SCHOOL	assembly hall galery		A402	
ADD. AAEA APORT.	vieving galery		${ }_{\text {B5-01 }}$	
(ADD. AREA SPORT.	group room		${ }^{85} 02$	${ }_{42}^{41}$
NET AREA				6,016
	external changing room 1		B4,13	39
	showers 1		${ }^{84.18}$	
			${ }^{\text {B4, }}$-16	
			- 84.14	3 39
			(84.26	+129
	${ }_{\text {cole }}$ Stiels		${ }_{\text {B4-23 }}$	
			${ }^{\text {B4.25 }}$	
	pupilioiets		A3.52	
	pupil toiles		А 3.54	
	pupil toilets		${ }^{\text {A2 } 247}$	
	pupil toielts		${ }^{\text {A2 } 249}$	
	pupil toites		A2.23	
			A2-24	
	pupil toilets		${ }^{\text {A1-09 }}$	
	pupil toilets		${ }_{\text {A }}^{\text {Al-11 }}$	
	dis. toilet		${ }_{\text {A3 }}^{\text {A3.16 }}$	
	dis. toilet		${ }^{\text {A3. }}$ A3	
	dis. toilet dis. toile			
			- ${ }_{\text {A2 } 22}$	
	dis. toilet		${ }^{\text {A } 1-10}$	
	staft toiet		${ }^{\text {a } 4.10}$	
			${ }_{\text {A }}^{\text {A }}$ A. 111	
	staft tioet		Аз.58	11
	staft tolet		${ }^{\text {A3. } 59}$	
	staft toiet staft hange 1			
	staft change 2		${ }_{\text {A3.56 }}$	
	visitiosslis. toliet		${ }^{\text {A4-15 }}$	
	kithen area sevice area		${ }_{\text {A }}^{\text {A3.41 }}$	70 54 1
				24
			А 3.47	
	plant		${ }^{\text {A3-45 }}$	
	ithub			
			${ }_{\text {A3-49 }}^{\text {A3 }}$	-

CIRC. SCHOOL	stairs	A4.01	
CIRC. SCHOOL	$\stackrel{\text { lobby }}{\substack{\text { corider }}}$	${ }_{\text {A4, }}^{\text {A4 }}$	9
CiRC. school	$\underset{\substack{\text { corrior } \\ \text { corricor }}}{ }$	${ }_{\text {A4-17 }}{ }_{\text {A4,09 }}$	${ }_{88}^{17}$
RC. school	lit 1		
CIIC. SCHOOL	stairs	${ }^{\text {A3.02 }}$	${ }^{26}$
CIIC. SCHOOL	corridor	A3.03	${ }^{90}$
CIIC. School	corridor	${ }^{\text {A3. }} 12$	${ }_{17}^{33}$
CIRC. SCHOOL	${ }^{\text {lobby }}$	${ }^{\text {A3, } 15}$	
CIRC. SCHOOL	corrior	${ }^{\text {A3.21 }}$	${ }^{54}$
Circ. School	lobby	${ }_{\text {A3 } 32}$	$\stackrel{20}{80}_{8}^{8}$
${ }_{\text {Clich }}^{\text {CiRC School }}$	Stairs	${ }_{\text {a }}^{\text {A3.33 }}$	${ }_{8}^{8}$
${ }_{\text {Clich }}^{\text {CiRC. School }}$	${ }_{\substack{\text { cobr } \\ \text { corridor }}}^{\text {lobl }}$	${ }_{\text {A3.52 }}$	${ }_{146}$
CIRC. School	corrido staff	${ }^{\text {A3.57 }}$	5
CIRC. SCHOOL	${ }_{\text {S }}^{\text {stars }}$ corrider stairs corridor	А3.69	
$\stackrel{0}{0}$	corricior staiss itit 2	70	84
詪 Circ. school	corricor		
${ }_{0}^{\text {a }}$	$\underset{\text { scorridor }}{ }$	${ }_{\text {a }}$	${ }_{216}^{26}$
$\frac{\bar{\circ}}{5}$ CiRC. SCHOOL		${ }_{\text {A }}^{\text {A2-29 }}$	${ }_{27}^{241}$
CiRC. SCHOOL	Stairs	${ }^{\text {A2 } 235}$	
	${ }^{\text {lita }}$ 2		
CIRC. SPORTSHALL	${ }_{\text {cobiby }}$	${ }_{84.01}$	
CIIRC. SPORTSHALL	corriol	B4.02	
CIRC. SPORTSHALL	lobby	B4.07	
(linc. SPORTSHAL	lobby	${ }^{\text {b4, }}$	
(cinc. SPoristal	lobby		
CIRC. SPortshall	lobby	84.22	
CIRC. SPortshall	lobby	B4-24	
CIRC. SPORTSHALL	corrior	${ }^{84} 28$	${ }^{13}$
Circ. sporishal	${ }^{\text {corribor }}$ corridor	- 84.29	15
CiRC. SPootishal	cortimor corridor	${ }_{\text {B4,45 }}$	
	partitions school partion sporshall		250 100 1
total circ. p partitions $^{\text {a }}$			
TOTAL NON NET			2,315
Suppl. Sporis.	internal changing 1	84.03	${ }_{4}$
SUPPL. SPORTS.	showers 1	B4.04	
SUPPL. SPORTS.		(84.05	
SUPPL. SPORTS.	internal changing 2	B4,12	41
SUPLL. SPoRTS.	showers 2	B4.11	
	toieles 2	84.10	
(e)	dis.change 2	${ }_{\text {cke }}^{\text {B4,49 }}$	
	pool change	B4.39	${ }^{93}$
\% SUPL. SPORTS.	${ }^{\text {pool group change }}$	- 84.40	${ }^{24}$
SUPPL. SPorts.	pool isis change	${ }_{\text {B4,42 }}$	
Suppl. sports.	${ }_{\substack{\text { pool toiels } \\ \text { pool pant }}}^{\text {and }}$	- ${ }_{\text {B4, }}^{\text {B43 }}$	11 155
Suppl. School	sprinkerer plant, pump room	A3-46	31
total supplementary			75
GROSS AREA			8,806
ADDITIONAL AREAS ADDITIONAL AREAS ADDITIONAL AREAS otal additional area	care taker store kitchen plant area plant area	A3-42	21 12 19
TOTAL GROSS A			8,858

Guernsey

Table A5．2－St Sampson＇s Room Schedule

Table

Department	Room name	Room type	Room	Area in m^{2}
Mathematics	Classroom no． 1	Classroom	1.01	${ }^{61}$
Mathematics	Classroom no． 2	Classroom	1.02	${ }^{60}$
Mathematics	Classroom no． 3	Classroom	1.03	57
Mathematics	Classroom no． 4	Classroom	1.04	56
Mathematics	Classroom no． 5	Classroom	1.05	59
Mathematios	Classroom no． 6	Classroom	1.06	55
English	Classroom no． 1	Classroom	1.10	6_{61}
English	${ }_{\text {Classroom no．}}$	Classroom	1.11 1.12 1.12	［60
${ }_{\text {Lem }}$ Engish	Classsoom no．${ }^{\text {cheom }}$	Classroom	1.12 1.13	
English	Classroom no． 5	Classroom	1.14	56
Engish	Classroom no． 6	Classroom	1.15	60
MFL	Classroom no． 1	Classroom	3.01	57
MFL	Classtroan no． 2	Classroom	3.02	56 56 56
MrıL	Classroom no．${ }^{\text {a }}$ Cassroom no． 1	Classroom	3.03 3.09 	
Hum／RE	Classroom no． 2	Classroom	${ }_{3.1}$	${ }_{60} 60$
Hum／RE	Classroom no． 3	Classroom	${ }^{3.11}$	${ }_{54}^{54}$
Hum／RE	Classroom no． 4	Classroom	3.12	${ }^{56}$
Hum／Re	Classroom no． 5	Classroom	3.13	56
Science	Laboratory No． 1	Science Laboratory	5.14	
（tain $\begin{aligned} & \text { Science } \\ & \text { Science }\end{aligned}$	Laboratior $\mathrm{NO}_{2} \mathrm{I}^{2}$	Science Laboratory	${ }_{5}^{5.15}$	90
（sience	Laboratory No．${ }^{\text {Laboratory }}$ No．4	Science Laboratory	${ }_{5.17}^{5.16}$	${ }_{90}^{90}$
Science	Laboratory No． 5	Science Laboratory	5.18	90
Science	Laboratory No． 6	Science Laboratory	5.19	79
${ }_{\text {cter }}^{\text {ITT }}$	ICT Classroom No． 1	IT room	5.01	9
${ }^{\text {ICT }}$	Business Studies Classroa	IT room	5.02	\％
${ }_{\text {IT }}$ ICT	ICT Classroom No． 2	IT room		${ }^{67}$
－Design Tech	Workshop No． 1	Workshop	4.06	$\begin{array}{r}102 \\ 102 \\ \hline\end{array}$
Design Tech	Food hoom	Foood foom	4.01 A	102
Design Tech	Texties Classroom	Studio	4.24	90
Design Tech	Graphics Classroom	Graphics room	4.23	${ }_{86}$
ART	${ }^{30}$ Art Room	${ }^{3} \mathrm{D}$ Arts stuio	4.14	102
ART	2 Aart Room	2 A Ars stuio	4.15	${ }_{90}^{91}$
MUSIC／DRAMA	Music Recital	Music recital	6．13A	${ }_{62}^{90}$
Music／DRAMA	Drama Suduio	Musicic cassioo	6.14 6.06	${ }_{98}^{62}$
Teaching area				2853
Halls	Assemby Hall		6.01	236
	Sporst Hall		SPT 09.02	595
halls total hal	Gymnasium		SPT 09.11	1
R	Engis Study Area		1.16	
${ }_{\text {LR }}^{\text {LR }}$	Clay Prep／Kilin Group Room		${ }^{4.16}$	${ }_{17}^{17}$
$\stackrel{L}{\text { LR }}$	Library		2.01	192
	mFL Study Area		3.05	6
\％LR	Shared Machinery		4.08	${ }^{26}$
言 LR	Heat Bay		4.09	${ }^{31}$
\％	SEN Group Room SEN Group Room		5.08 5.09	59 26
\％LR	Careers Base		5.13	${ }_{16}^{26}$
发 LR	Control Room		6.11	10
\pm LR	Music group	Music Practice Room No． 1	6.15	
$\stackrel{\text { LR }}{\text { LR }}$	Music group	Music Practice Room No． 22 Music Pracice Room No． 3	${ }_{6}^{6.17}$	
$\stackrel{L}{\text { LR }}$	Music group	Music Practice Room No． 4	6.18	
LR	${ }_{\text {Music group }}^{\text {Recor }}$	Music Practice Room No． 5	${ }_{6}^{6.19}$	
${ }_{\text {｜total learning }}$				＋13
resource				${ }^{454}$

	current number of rooms		current area for teaching space type
Classroom		20	1152
Science Laboratory		${ }^{6}$	529
IT room			247
2 A Artstudio			91
3 A Artstudio			102
Workshop			204
Food room			${ }^{102}$
Studio			
${ }_{\text {Craple }}^{\text {Musics recital }}$		，	86 90
Music classroom			62
Drama studio			98
		39	${ }^{2883}$
Gross Area		9，500	
Net Area		，343	
Other net area		801	
Hals，Dining and PE		$\stackrel{1.198}{596}$	
Staff and Admin．		441	
Learring Resourc		454	
Teaching Area＊		2.883	

SA	Math Staff Base／Store	1.08 A	
SA	Engish Staft Base	1.18	9
SA	HUM RE Staft basel Store ICT Technicians office	3.15 A 5.06	10 13
SA	Science Offic	5.51	15
SA	Music Staff Base	6.22	11
SA	Receppion Main Office／Secreatries	8.01 8.02	${ }_{30}^{22}$
SA	Main $\begin{aligned} & \text { Maitice Secreataries } \\ & \text { Headteacher＇s Office }\end{aligned}$	8.02 8.05	30 20
SA	Deputy＇s Office	${ }_{8.06}$	12
	Reiereral Room	8.1	19
	Medical／Fist Aid Room	8.15	9
${ }_{\text {en }}^{\text {E }}$ SA	Year Head＇s Office No． 2	8.21	10
${ }_{5}^{5}$ SA	Year Head＇s Office No． 3	8.22	9
${ }_{\text {\％}}^{5}$	SMT office	8.03	12
${ }_{5}{ }^{5} \mathrm{SA}$	Deputr＇s oftice	8.07	${ }^{12}$
SA	Meeting Room	8.81	28 11 11
SA		${ }_{8.11}^{8.11}$	94
SA	Year Head＇s Office No． 1	8.2	${ }_{11} 1$
SA	Year Head＇s Office No． 4	8.23	9
SA	Year Head＇s Office No． 5	8.24	10
SA	SMT Office No． 1	${ }^{8.25}$	11
SA		${ }_{8}^{8.32} 8$	${ }_{22}^{12}$
SA	Sports Staff Base／Store	SPT 9．35A	10
			${ }^{441}$
storage	Maths Store	1.09	16
storage	Maths Staff Base／Store	1.088	
storage	Englis Store	1.17	19
Storage	mFL Store	3.06	10
STORAGE STORAGE	HUMRE Staff Base／Store	3．158	
storage	Graphics Store	4.25	10
	Food Room Cloaks	4.018	5
	Food Store	4.04	
	Design Tech Prep Room	4.12	5
范	Art Sore Art Store No. ．	4.18	${ }_{21} 1$
\％	Texties Store	4.26	14
\％	Science Prep Room		52
	Chemical Store	5．23	20
	Music foom Store	${ }_{6.13 B}$	5
	Instrumental Store	${ }^{6.23}$	25
STORAGE Storace	Soors Hal Store	SST 9．03	$\stackrel{42}{9}$
Storage		SPT 9．35A	12
Storememe	Gym Store No． 2	SPT 9.22	9
total storage （teaching）			410
storagent	Gas bottle store		
Storage nt	Pupil Storage（lockers）	10.2	${ }^{43}$
－STORAGE	Assembly tall Stiore No． 1	$6.02 a+b$	${ }_{30}^{27}$
	Exam Desk Siore	6.03 6.27	30 7
－Storagent	Hall Store No． 3	6.28	7
destorage nt	Hall Store No． 4	6.29	
O．Storage nt	Cleaners＇Cupboard	MSs 09．25	3
\％iol STORAGE nt	Cleaners＇Cupboard	SPT 09．23	3
is STORAGE nt	Admin store	8.31	3
STORAGE nt STORAGE ntt	${ }_{\substack{\text { Exam Store } \\ \text { Reprographics }}}^{\text {a }}$	${ }_{8.17}^{8.12}$	10 20
Storagent	${ }^{\text {Paool Office }}$	SPT 09.34	7
	Pool Store	SPT 09.26	${ }_{3}^{3}$
total storag	Pool Store	SPT 09．27	
teaching）			186

Table A5.3-Le Murier Room Schedule

Table

Department	Room name	Room type	Room	Area in m^{2}
	Post 16 Classroom	Classroom	1.01	${ }^{63}$
	Complex Needs Classroom No.	Classroom	2.01	71
	Complex Needs Classrom No,	Classroom	2.08	69
	${ }_{\text {KS3 Cassroom No. } 1}$	$\xrightarrow{\text { Classroom }}$ Cassrom	${ }_{4}^{4.01}$	65 55
	${ }_{\text {KS3 }}^{\text {KS Cassroom }}$ No. 3.3	$\underset{\substack{\text { Classroom } \\ \text { Classrom }}}{\text { cesem }}$	4.03 4.04	55 65
	${ }_{\text {K }}$ KS Cassssioom No. 5	Classroom	${ }_{4}^{4.05}$	${ }_{54}^{65}$
		$\underset{\substack{\text { Classroom } \\ \text { Classroom }}}{\text { a }}$	${ }_{4}^{4.06}$	66 65
年	${ }_{\text {KS4 C Casssroom No. }}$	Classsroom	${ }_{10.01}^{4.09}$	${ }_{65}^{65}$
$\stackrel{\square}{\square}$	K54 Classroom No. 2	Classroom	10.02	54
产	K54 Classroom No. 3	Classroom	10.03	${ }_{6} 6$
${ }^{\circ}$	K544 Classroom No. 4	Classroom	${ }^{10.04}$	${ }_{54}^{54}$
Science	Kaborasary	Scienceo Laboratory	${ }_{6.08}^{10.05}$	${ }_{62}^{64}$
ICT Suite	ICT Classroom No. 1	IT room	5.02	${ }^{35}$
(1CT Suite	Business Studies Classioom	${ }^{17}$ Trom	5.03 6.03	${ }_{78}^{35}$
($\begin{aligned} & \text { Design Tech } \\ & \text { Desig Tech }\end{aligned}$	$\underset{\substack{\text { resistant material } \\ \text { Food Tech hoom }}}{ }$	$\underset{\substack{\text { Workshop } \\ \text { Food foom }}}{\text { a }}$	${ }_{7}^{6.01}$	78 69 69
ART	${ }_{\text {Ant }}^{\substack{\text { Art oomm } \\ \text { Music Drama }}}$	${ }^{20}$ A Ar studio	6.01 6.05	${ }_{62}^{78}$
(total basic teaching	Music Drama	Music classroom		$\begin{array}{r}\text { 1.223 } \\ \hline\end{array}$
Halls	School Hall		8.02	110
tal hals				
LR	${ }^{\text {Education Support }}$		1.05	
$\stackrel{L R}{\text { LR }}$	Ressurce Area Library Resource Centre		4.15 5.01	25 65
$\stackrel{\text { LR }}{ }$			${ }_{9.13}$	
LR	Nurse RoomResourcecrea		10.07	${ }^{25}$
$\stackrel{L R}{\text { LR }}$	${ }_{\text {KS }} \mathbf{S}$ Group Room No. 1		4.08	12
$\stackrel{\text { LR }}{\text { LR }}$			${ }_{4}^{4.1}$	12 12 12
LR	KS3tcomplex Needs Group Room		4.18	12
LR			9.03	${ }^{33}$
$\stackrel{L R}{ }$	Group Room		${ }_{\text {9.05 }} 9$	${ }_{14}^{24}$
$\stackrel{\text { LR }}{\text { LR }}$	Group Room	Music Pracice foom No. 1Music Pracicice Room No. 2	10.06 10.11	14 14 14
total learning				271
			${ }_{9.06}^{9.02}$	16 26
			${ }_{9.08}$	${ }_{83}^{26}$
			9.1	21
lammin				176

ANNEX I - BACKGROUND RESEARCH PAPER ON THE POSSIBLE LINK BETWEEN CLASS SIZE AND ACHIEVEMENT

States of
Guernsey

Peter Marsh Consulting Ltt.

A lot of the work in this field uses data collected for other purposes, always a risky procedure.
Alot of the work in this field uses data collected for other purposes, always a risky procedure.
Using administrative registry data, we find statistically significant negative effects of class size on academic achievement." (Krassel, 2014)).
Even the huge study undertaken in Tennessee in the 80s, the Project STAR (Pupil/Teache Achievement Ratio) has critics; however, overall one can say "although the results of one experiment must be treated cautiously, the STAR study results do appear to be reasonably ther than a class of 23 in an environment of ample teachers and facilities, and this advantag appears to persist well into upper grades after students have returned to larger classes. Although the advantage is persistent, it is not cumulative." (Erherberg, 2001) PMc italics.
most of the studies cited are based on U.S. data, Jepsen (qv) shows, that "A study of 11 countries, predominantly in Europe, shows substantial cross-country variation in the relationship between class size and s.
from smaller class sizes."
3.0 Points of Agreement Across Some Studies

So long as one recognises that these points of agreement do not necessarily rely on the size of class per se, there is a slight correlation between size of class and higher achievement in early ears and for strugging students, and some evidence that the achievement gap between low
and high achievers is narrowed (Erherberg, 2001, Bosworth, 2014). "...we should have a policy reduce class size in Australia's most disadvantaged schools during the first four years of
 cost effective than an across the board approach." (Zyngier, 2014)
All the studies agree that teaching methods, inter alia, are more important than the class size; however, when class sizes reduce, teachers do not necessarily change their style. Intuitively, one thinks that teachers will spend more time with individual pupils in small classes, but there is evidence that his does not happen. Research suggests nat teachers do
4.0 Cost Benefit Ratio

The question must be, "Do the benefits of smaller class sizes outweigh the costs associated with the resources required (extra teachers, extra facilititis)?" "Ehrenberg, 2001). Even schanzenbach (qv) states, "Policymake

The very useful recent paper by Jepsen states, "..empirical research on the costs and benefits smaller classes concludes that other education poiicies, such as tutoring, early childhood pograms, or improving teacher quality would be better investments." and "Reducing class size is a very expens
(Jepsen, 2015).
To take a simple example from Jepsen's paper, "Thus, the two primary costs of reducing class izes are the cost of additional teachers and the cost of creating additional classroom space. O this basis, studies from the US suggest that each "one-student" reduction in class size has a cost of $\$ 200-250$ per pupil. However, it is important to consider that there, may also be
additional costs involved, such as electricity and other costs of operation."

3

States of
Guernsey

5.0 Conclusion

At the present level of knowledge there is no consensus on whether smaller class sizes result in igher achievement, all things being equal, simply because all things are never equal Despite the existence of a considerable and current educational literature concerned with the effect of class size on student achievement, the results of attempts to empirically identity the relationship betw
(Borland, 2005)

Despite some evidence that smaller classes may help some younger and some disadvantaged children, in terms of the increased sar and capital and operational class sizes, there is no conclusive evidence that this is a good policy choice when compared to other interventions which have been clearly shown to be more effective.

6.0 References

BORLAND, V., HOWSEN, M., TRAWICK, M. (2005) An investigation of the effect of class size on student academic achievement.
BOSWORTH, R. (2014) Class size, class composition and the distribution of achievement.
EHRENBERG, R. G., BREWER, D. J., GAMORAN, A. \& WILLMS, J. D. (2001). The class size controversy.

HARFITT, G. J. (2013) Why 'small' can be better: an exploration of the relationships between class size and pedagogical practices.

JEPSEN, C. (2015) Class size: does it matter?
sChANZENBACH, D.W. (2014). Does Class Size Matter?
INGIER, D. (2014). Class size DOES make a difference: latest research shows smaller classes have lasting effect.

ANNEX 2 - NOTES OF PMC SITE VISIT ON I6 \& I7 OCTOBER 2018

Annex 2 -
States of Guernsey
11 - 18 Education Space Planning:
Notes from meetings and site visits held on
16 and 17 October 2018
Puernsey

Contents Page

1.0 Meeting 1 - Introduction from the Executive Head........................... 5
2.0 Site Visit 1 - Les Beaucamps High School 6
2. External Building \& mpressions ...
2.2 General Purpose (GP) Classroom ..
2.3 Science Laboratories... 7

25 Food Technology Room
26 Art Spaces
7 Design Te Tnology Workshops .
28 Sen
28,
Rectory and Dining
2.10 Courtyard.
... 10

,
2.13 Other Spaces.

14
2.14 Parking Spaces.. 14
3.0 Site Visit 2 - The Grammar School ... 15
3.1 External Building ... 15
3.2 General Purpose (GP) Classroom ... 15

3.4 Spor Facllt .
3.4 Outdoor Space \qquad
,
.......$~ 18$
Site Visit 3 - La Mare High
4.1 External Building ..
4.2 General Purpose (GP) Classroom ... 19
4.3 Circulation and External Space ... 20
5.0 Meeting 2 - Closure of Day 1.. 21
6.0 Meeting 3 - Briefing with the members of Education Committee.. 25
6.1 Part 1 - Pre-meeting with the Portfolio Director.. 25
6.2 Part 2 - Meeting with the members of Education Committee. ...
...
.
7.0 Site Visit 4 - St Sampson's High School... 28
7.1 External Building ... ${ }^{28}$
7.2 General Purpose (GP) Classroom .. 30
7.3 Science Laboratories.. 30
7.4 Food Technology Room... 31
7.5 Design and Technology Workshops .. .31
-
7.7 Cira Din .. 32

7.8 External Space. .348.0 Meeting 4 - Closure of Day 2 36
9.0 Meeting outcomes. 37
9.1 Key Points:- 37
9.2 Questions to address 37

Attendees

Ashley Dupre (Head of EDP projects) AD
Liz Coffey (Executive Headteacher) LC ouisa Aron (Curriculum \& Timetable) LA Sophie Roughsedge (Headteacher) SR Geraint Ap Sion (Portfolio Director) GAS Matt Fallaize (President of ESC) MF Richard Graham (Vice President) RG
Peter Marsh (Executive Director at PMc) PM Michael Paltrinieri (Space Analyst at PMc) MP

These notes capture the key points of discussion, constraints on the sites, observations in relation the existing condition of buildings and the use of space, together with questions to be addressed In additional information required to complete the study that were identified during the course of the two day visit.

1.0 Meeting 1 - Introduction from the Executive Head

At the beginning of the meeting LC briefed PMC about the core aim of the project: to adopt a new ystem of $11-18$ education, in replacement of the current $11+$ test and grammar / secondar education model, in order to provide the very best opportunities for all learners throughout their 11 8 year old education irrespective of their academic performance at the age of 11 . The new system
will replace the current four schools and create and new unified $11-18$ School across two sites.LC highlighted the following key points:

- the two preferred sites chosen for the new school are: Les Beaucamps High School (LBHS) and St Sampson's High School (SSHS) - the buildings on these sites were completed in 2012 and 2008 respectively;
- on the same site as SSHS there is a Special Education Need (SEN) Centre which operates a a standalone centre, although the two buildings are physically connected;
the two sites that are proposed to be released are: La Mare High School and the Gramma School;

Grammar School is the only site between the four that currently houses both secondary (Yea 7 to Year 11) and sixth form provision (Year 12 and 13): and,
the States of Guernsey aims to complete this project (and therefore have the two sites at ful capacity) from the start of the academic year 2023/24 at the latest.

The States of Guernsey (SOG) is seeking support from PMc to answer the following key question: What are the additional space requirements which need to be added to the existing buildings on the preferred sites in order to cope with the planned increase in students number?

LC reported some potential constraints within the two preferred sites which are:

- perceptions of low capacity of food technology teaching spaces on both sites
- № of science laboratories not adequate to accommodate future students numbers on both sites
design technology and art will potentially require additional specialist spaces once the new school is established; and,
the refectory and dining spaces at the SSHS site is arready cramped for the current students number on that site and on both sites there may need to be additional catering provision (to cope with queues and demand) and/or additional food outlets provided.

Before the scheduled site visits, the group discussed the optimal group size for key stage 3, 4 and year 12 and year 13. The four schools have a stated average group size of 24 students with some larger and smaller group sizes especially in key stage 4 and sixth form. LC contirmed that an average verage grous 24 students is appropriate for the new school too. PM questionedne LBHS site. He also suggested that there was no imperial evidence in the UK to suggest a reduction in group size from 30 to 28 or an increase from 24 to 26 had any impact on the outcomes for learners. LC acknowledged and agreed with PM on this point and AD and LC explained that the 'romise' of maintaining smalle group size was as much an issue for members of the education committee as it was for room size planning.

2.0 Site Visit 1 - Les Beaucamps High School

e attended a site visit of Les Beaucamps school to better understand how the campus operates, nderstand the external and internal spaces, observe students' flow, as well as teaching and noneaching spaces, etc.
The images below capture where we have identified some of the more significant constraints in future space planning and/or assets that can be made to work harder in the context of a new school.

2.1 External Building \& Impressions

The site has been developed across four levels down a sloping site. This has the positive impact of limiting the scale of the buildings on the first approach - indeed the main entrance building, at the frst, appears to be a small single storey structure; it then reveals itself on its sloping site once visitors progress beyond reception.

mages of the external building (credit Paul Smith)

2.2 General Purpose (GP) Classroom

We observed that all general purpose classrooms have an area around $60 \mathrm{~m}^{2}$. They are ver generous rooms for groups of 24 and even for groups of 30 when laid out in rows; the seat count in ach GP room was mostly 30 and always greater than 28 chairs. Furthermore, the reoms provide rather generous space for storage which is mostly located at the back of the classroom and/or within the 'teachers wall' at the front of the classroom.

Following discussions it was agreed that for any new teaching rooms an area of 54 or $56 \mathrm{~m}^{2}$ would be adequate for a group of 30 , and be generous for a group of 24. It was noted and agreed that more space is generally needed if tables are laid out in groups of 3 or in a horseshoe setting.

2.3 Science Laboratories

We observed that the four science laboratories on site have an area around $90 \mathrm{~m}^{2}$. We have sserved that 30 students can be easily seated in these specialist spaces even though the perimete layout of power/water and gas meant that students needed to move from benches located in the middle of the classrooms to those built in around the edge to complete practical experiments. We noted that the number of workstations around the perimeter were limited to around 7 sink areas and dozen gas/power points which means that students would need to work in groups of $2-4$ when carrying out perimeter based experiments. We noted that in all science rooms there was a raised equiring a doubling up of workstations, the perimer layout means that when experiments are being onducted most learners will have their backs to the teacher

We discussed how, if new science lab's were being buil, having fixed pedestais for water, power and data and gas and flexible benches between them could both reduce the need for space (by emoving some of the perimeter benching) and improve health and satety by allowing all learner

解ducing experiments to be visible by the teacher. We also reviewed three general purpose assrooms located in the same area (across the corridor) as the science labs. Whilst these are no big enough to provide fully serviceable science lab's they could form part of the future science curriculum space either by
contiguring the 3 spaces into two labs of 90 metres; or
Installing more power and benches to support aspects of science that do not require water or gas for effective teaching and learning.
preference was expressed by the teaching team for the creation of full additional science lab's but note that a large part of the science curriculum can be taught in spaces that do not have gas and water and with an increase in the availability of on-line and VR based learning the rooms above may be suitable additions to the science teaching accommodation

Music and Performance Room

We observed generous and well equipped performance spaces - in the main hall, behind the main hall, in IT music labs, practice studios and general performance spaces. We noted, and it was agreed, that there is currently an excess of music and performance spaces for the number of learners sed to capacity.
2.5 Food Technology Room

We observed that the food tech' room is a large space with an area of $115 \mathrm{~m}^{2}$. This specialist space currently includes $N \circ 9$ workstations that equals to 18 students (two students per station) operating n kitchen equipment at the same time. Through discussion with AD it was noted that two additiona ations could probably be accer in this rom if required via minor adatations.

2.6 Art Spaces

We observed that there are $\mathrm{N}^{\circ} 2$ art studios; one for 2 D art and one for 3 D art which are both around $100 \mathrm{~m}^{2}$. The studios accommodate large tables and many storage spaces. These studios have access to a small computer room located upstairs - accessible only from the studio.

2.7 Design and Technology Workshops

We observed that there are currently two D\&T workshops and their areas are 105 and $125 \mathrm{~m}^{2}$;we ounted 20 and 25 seating in these two spaces. The rooms are well equipped, benefit from good eating and ventilation, are serviced by a dedicated technician room and appear to be in in very

2.8 SEN Room

The school have recently converted a staff room into a room to support learners with Special Education needs. Whilst well equipped an airy this room is perhaps larger than needed, lack discrete spaces to support particular learning needs and, being located off the main corridor, is not s sensitively located as it might be. This room could be converted into another art or science room
SEN provision was more sensitively designed as part of any additional accommodation that maybe SEN provision was more sensitively designed as part of any additional accommodation that maybe

2.9 Refectory and Dining

We observed that during lesson hours, the performance hall space is open and clear of furniture whilst at lunch time, the refectory and adjacent spaces are set up with chairs and tables to accommodate students eating their meals. We have counted that $150 / 170$ students can be seated installed. We believe that the assembly hall, which currently has seating for c100 students, can accommodate circa twice as many students; it has an area of $220 \mathrm{~m}^{2}$ and assuming that each studen needs $c 0.90 \mathrm{~m}^{2}$ per 'cover(figure suggest by BB103), we estimate a capacity over 230 seats; this is in addition to the area of seating in the refectory café area which is located between the assembly hall and the library

We discussed how the current counter operation created a long queue along the corridor and options o address this via better queue management arrangements and/or opening a satellite or temporar servery area (salad bar, etc.) elsewhere in the space may help to alleviate the sense of queuing at unch time.
efectory, dining space and assembly hall layout on lunch time - note spare space not currently used for seating

2.10 Courtyard

We observed that this space is well used by students during the lunch and other breaks and provides functional links between buildings during room transition that help to alleviate the pressure on the corridors. The general arrangement of having classrooms on one side of the corridor and the corridors facing into the courtyard was admired but noted also as a more expensive building design ption than a traditional double classroom layout.
mage of the courtyard during lunch break

2.11 Circulation

We measured the corridor width and observed that they are all between $2.05 / 2.10 \mathrm{~m}$ wide. We observed that students flow in these spaces works well as a result of the building layout - students can reach their next timetabled room by choosing various paths. This arrangement should wide and many of them allow four people to walk up or down at the same time; similarly some of the fire escape stair cases appear to be designed for much larger capacities than are currently enrolled at the school.

2.12 Outdoor Space and Sport Activities

We observed that the campus has a limited footprint and that the buildings sit on a relatively steeply sloping sight with the flat area contained at the top of the site between the main teaching blocks and the Sports Hall building. We did not visit the Sports Hall building but understand that it contains four lane swimming pool, a gymnasium of c250 m^{2} and the sport hall itself contains N N 4 courts.

The majority of the non-building area accommodate sport pitches which comprise

- a large MUGA with two full sized five-a-side pitches;
a large tarmac area with a range of sports activities ined up; and,
a playing field which contained one full size football pitch.
We understand that the current location of the MUGA pitches is the most pragmatic location for adding additional teaching and learning space on the site and that, if this site is used, the MUGA hich could be met by either acquiring more land, making use of higher quality pitches managed by the Committee on other nearby sites and/or sharing facilities with Sampson's.

13
2.13 Other Spaces

We observed that there is a significant under used area on the western roof top that potentially could be converted in space required by the future school - for either breakout activities, summer lunch time café space or sculpture etc.

Roof top

2.14 Parking Spaces

We observed that the car park is located at the front of the site next to the MUGA courts, however, we have not counted the current capacity. We suggest that a parking survey be undertaken and a future travel plan be developed to understand the current capacity of the space for both car and scooter parking as a result of the planned increase in pupil places. We also observed that when sixth
form students will be on this site, there is more need for parking spaces - and especially scooter orm students will be on this site, there is more need for parking spaces - and especially scooter not be sufficient for future needs and this issue needs to be factored into the future external space planning on the site.

Aerial view of the two parking areas. (source GoogleMap)

Site Visit 2 - The Grammar School

We visited the site of The Grammar School to understand how the campus operates, understan , external and internal spaces, integration between sixth form students and lower school students, etc.
3.1 External Building
e observed that the building is in mediocre condition and identified examples of significant distres to parts of the concrete fabric in the school building on this campus.

3.2 General Purpose (GP) Classroom

We observed that the general purposes classrooms are of a significantly smaller size (estimated around $45 \mathrm{~m}^{2}$) than at LBHS, although they appeared to be coping with a similar capacity of learners (we counted 28 seats in one of these rooms). The use of single 600 mm by 600 mm desks makes the

輷 seem more cluttered and less flexible that the 1200 mm by 600 mm desks used in LBHS. We suggest that when class sizes may vary from 12 to 28 , the larger desks work adequately for a pair of learners to share in the larger groups and they provide a large single workspace for smaller groups. This helped confirm our view that a $60 \mathrm{~m}^{2}$ standard classroom size is bigger than necessary, ms in the Sixth Form building were also smaller than at LBHS with a seated capacity of 28 .

Example of secondary general purpose classroom

3.3 Refectory And Dining

We observed that in the Grammar school part of the campus there is a relatively small dining space for students. The space shown below is supplemented by rather unsatisfactory additional eating spaces located in classroom sized rooms elsewhere on this floor with fold-down dining tables. We Inderstand that there are two kitchen facilities; one for the lower school and one for the sixth form.

Lower school dining space

3.4 Sport Facilities

We observed that within the school there is a spor hal and swimming pool although the tatter is now dis-used.

Swimming pool and sports hall

3.5 Outdoor Space

Whilst the site is surrounded by large and well kept playing fields these do not belong to the States of Guerssey; they are the property of the neighbouring private school. There is a modest staff ca park and students make use of a car park opposite the school to park cars and mopeds; we park and students make use of a car park opposite the school or park cars and mopeds; we
understand that this is on an informal basis. As such, the volume of external space supporting the Grammar School is very limited.
3.6 Sixth Form Activity

We observed that the open space within the sixth form area is very well used by students for informal earning and group study purposes. This is an excellent example of making non-teaching spaces ork more efficiently to potentially compensate lack of space other zones suncteack formal libray reas. We would encourage this approach to informal cate spaces being replicated in the two sites of the new school system.

Site Visit 3 - La Mare High Schoo

We attended a site visit of the La Mare High School to understand how the campus operates, derstand the external and internal spaces, classroom layouts, etc.

. 1 External Building

We observed that the buildings are in a generally poor condition; they are original 1960s Scola buildings that have been re-clad in places and re-glazed in the majority of buildings. The layout of the school fails to create a sense of place and does not provide a "warm" welcome to students.

Above - Aerial view of the external sport provision and campus (credit Kevin Lajoje 2012),

4.2 General Purpose (GP) Classroom

Due to limited time we did not visit general purpose classrooms on this site but did view the recently ompleted SEN space which had tables joined together to facilitate small-group learning. W observed that the SEN space was mores jenerously laid out to provide more $1: 1$ tuition space and hat it had a number of smaller rooms for more confidential support. The location of the SEN area in a discrete and quiet area, was considered more suitable than the current facility at LBHS.

Example of recently completed SEN teaching space

4.3 Circulation and External Space

We observed that corridors were generally adequate and the dispersed nature of the buildings avoided too much crowding. All of the classrooms and corridors have rather low ceilings which does ot help to create a sense of space.

We also observed external spaces are in generally poor to utilitarian condition and that whilst the school enjoys large outdoor sports spaces the relationship between these and the main school is unwelcoming - with rather dilapidated gates connecting the two.
here were none of the landscaped features of LBHS on this site to encourage positive use of outside space and generally the campus 'felt' like tired secondary school rather than a first class centre for learning.

Gate linking the school with the external swimming pool and courtyard space

5.0 Meeting 2 - Closure of Day 1

PM summarised his observations from the sites visits (reported above) to the group highighting onstraints and opportunities. He observed that LBHS appeared to be substantially under-capacity and that the campus overall is in excellent condition; the main building is very well designed across four levels; the courtyard which is the core of the building, allows good communication between the enerosity of space and the use of courtyards made the school feel like a prestigious UK Independent School rather than a 'standard' secondary school.

LC shared comments about the existing buildings and operation (some which are already referred in the sections above) as follows
the main building at the Beaucamps site was designed and sized based on "Guernsey standards". This means that the school capacity is lower than a same-size-school designed with UK standards. The school has a capacity of 660 students and currently there are 470 studen

- there are currently 675 students at the St Sampson's High School (excluding the SEN
- in the four schools, the average student group size is generally 24 students especially in key stage 3 and in a few occasions up to 30 student in a group. Key stage 4 has larger "float" and can have very small student groups ($6 / 7$ students in a class) in some subjects;
- the four schools combined currently comprise 17 forms of entry;
- the teaching space, especially classrooms, at the Beaucamps site, is under occupied mainly due to the generous classrooms size and smaller student groups;
the refectory area in both LBHS and SSHS sites is undersized and there is shortage of seating. At LBHS the assembly hall is used to accommodate additional learners at lunchtime;
- that serves food. This causes long queves and a very busy environ there is only one station the food tech curriculum is a potential constraint to the new school activity due to the limited capacity of the food tech room in both sites.
the small number of science laboratories is a potential constraint to the new school activity in both sites and would need addressing in the two-school model.
LA introduced the draft "Curriculum and Design brief" for the new school system which she stressed is still and early draft document. The document was used during the meeting to move the discussion owards the potential specialist spaces required and the new timetable that will be adopted in the new school system.

LA reported key changes of the timetable as follows:

- number of lessons per day decrease from 6 to 5 slots;
- the overall taught time is not affected and the students will still attend 300 minutes of lessons each day
introduction of a staggered lunch break. Total break 1 h 20 min spitit in 40 min for lunch and 40 min for tutor sessions; and,
introduction of compulsory enrichment sessions at the end of each day
The new timetable should bring a series of benefits including:
- less movement for the students (fewer transitions between sessions);
- improved teaching quality as there will be more time to engage learners in deeper learning: improved use of common areas such as the dining and refectory spaces - reducing the need to add substantially to these areas in the future.

PM asked the team why an extension to the school day had not been proposed - as having six slots of 60 minutes would be the same as an extra day of teaching time which would allow the buildings to work more efficiently. LC replied that adding one extra hour to the timetable would be too extreme a change that would be unpopular with teaching staff and could lead to a hostile response from the local community.

LA also shared the draft planned rooming and staffing requirements for the new school and reported hat $N^{\circ} 12$ science laboratories would be needed in each of the two sites (there are currently $\mathrm{N}^{\circ} 4$ labs at the LBHS and N 06 labs at the SSHS site). She reported that more space is also needed to accommodate the future students numbers in food tech, music and drama activities. Higher number of general purpose rooms are also needed to accommodate classroom-based activities. As a consequence, there is a higher need of additional statfing which was estimated at over 50 additional . LC present that the had been unable to get reliable baseline data so the comparisons may not be accurate.

PM questioned the group on the preferred class group size for the new school and the group confirmed their preference of maintaining the current group size of 24 students and potentially lesting a group size of 26 students.
PM attempted to understand which areas of teaching were likely to reduce if some areas (such as science) were forecast to grow so rapidly. It was not evident that any areas were planning to shrink and it became apparent that because the team were planning for two schools of 10 form entry vs of taught groups. The group discussed further the current and future forms of entry that will be required for the two
schools to be fit for purpose for the future requirements of the new school. The school team reported that the preferred option is to have 20 forms entry (or eventually 18) equally split between the two entry when brought together is leading to a larger form of entry requirement: he suggested that combining groups should generate an equal or lower number of forms of entry required across two
sites. He furrher suggested that if the school adopled marginally larger student group sizes, the number of forms entry needed may decrease furthe
PM asked what the relationship between the lower school and the sixth form will be in the new school. LC responded that the sixth form activity should be integrated with the lower school rathe than create a standalone centre within the buildings. LC stated that she believed that integrating the sixth form learners with the rest of the school should enable them to provide good examples of role models to younger students and that that would be especially helpful in managing behaviour across the larger schools.

M asked to what extent, in adation to the growih in students based on population growt, the team ad factored in the potential for there to be a growth in sixth form students retained on site once the new school system is established. A discussion took place on the likely post 16 offer and the need subjects such as business could grow in the school and the number of learners leaving the school to go to the GFE may reduce. For this reason it was agreed that a retention factor should be modelled into the future students numbers for space planning reasons. Also, with the introduction of a new system more students are likely to pass the level 2 exams and be able to study A levels o other Level 3 qualifications at the age of 16 and that this should also factored in the student number orecasts.
PM asked what the current scholarship numbers across the school and LA reported that there are 52 places for each year group from Year 7 to Year 11 which totals circa 250 places. We understand that in the future these students will not receive scholarships support but would instead enrol into the new school. We would appreciate confirmation of this assumption.

Throughout the meeting, the school's team raised a series of questions that are listed here.
Does the Beaucamps site comply with BB103 at the current time for internal and for external space requirements?

- Will the Beaucamps site comply with BB103 when the new school system is in place (with more students from existing schools) and if not, how much extra space is needed?
- What estate interventions need to take place at the Beaucamps site to accommodate future numbers and requirements?
Does the St Sampson's site comply with BB103 at the current time for internal and for externa space requirements?
Wilt the St Sampson's site comply with BB103 when the new school system is in place?
What estate interventions need to take place at the St Sampson's site to accommodate future numbers and requirements?
What is the "right" group size and number of forms of entry in order to balance creating an efficient and effective school with the desire to improve the school utilisation, minimise (and quality of the staff working environment?
How can the spare space in some teaching rooms be better utilised?
- What wil be me erect of ofering sixh form activies on sie? Wir he number of sixh form entries rise due to retention of more students in school and fewer moving to the GFE college?
- Can the SEN activity be relocated elsewhere or be integrated into mainstream education to
accommodate a future growth in student numbers at the St Sampson's site?

6.0 Meeting 3 - Briefing with the members of Education Committee

. 1 Part 1-Pre-meeting with the Portfolio Director

Day 2 started with a pre-meeting with PMc, AD and Geraint Ap Sion (Portfolio Director) GAS.
GAS reported that the current school system is expensive to run and furthermore it has not achieved he results expected of it. More money was spent per student class sizes were smaller and yet esults were not as good as mainland UK schools with similar catchments. For these reasons GA tated that the new school system needs to be better tailored to deliver what works for learners.

PMc were informed that, although the Beaucamps and St Sampson's are the two proposed sites for he new school, there has not been an unanimous agreement between the members of Education current Grammar School. PM supported the choice made by the maiority of the members for a se of reason such as:

- buildings of recent construction;
- newer and fresh learning spaces
- larger teaching spaces;
- larger external area covered by the two sites, etc.

PM reported some observations from the site visits especially highlighting the following:

- The Main Building at the Les Beaucamps campus has a very welcoming and inclusive design across four levels. The courtyard which is the core of the building, allows good communication between the different zones,
- The general-purpose classrooms at LBSH are very generous and it is difificult to reuse the excess internal space differently. However, when assessing spaces against BB103 guidelines the excess
of space within classrooms could theoretically be compensated by better-than-standard use o non-teaching areas; and
The average students' group size could theoretically be extended from 24 to 28 or 30 to increase the occupancy of these classrooms and reducing the number of additional rooms needed

PM was informed that the President of Education Committee's preference is to have smaller student class sizes and PM noted that student's outcomes are not generally impacted by difference in group izes of 24,28 or 30 . For this reason the quality of teaching should not change by adopting large group sizes; indeed a group of 30 being taught by a very good teacher than a smaller group being
laught by a less experienced teacher.

Finaly, the need to estabish the extent to which the two school sites meet the requirements set out in BB103 for outdoor facilities for the sport curriculum was briefly discussed. The potential to use other locations for sport under the management of the SOG committee was also noted.

6.2 Part 2 - Meeting with the members of Education Committee

The members of the Education Committee Matt Fallaize (President of ESC) MF and Richard Graham (Vice President) RG along with Executive Head's team joined the meeting.

The first discussion led by GAS focused on the figures from the "Curriculum and Design brief" report discussed on the meeting 2 (day 1). PM asked for further clarifications about the number of additional are not currently on the curriculum list and as a result, the number of required additional staff for the new system should decrease significantly once these numbers are finalised. LC also commented that current staft is underperforming especially in core subjects such as english and maths and new or additional staff would be needed to address this concern. The new school will not only require more efficiency in the use of teachers but also in other staff such as care takers, cleaners, lunch supervisors, etc. GAS stressed the need for the revenue implications of the new school model to be affordable.

PM noted a number of the positives from the discussions held on Day 1 and reported his support on the staggered lunch proposed in the new timetable option which will bring a set of benefits such as: less space required for refectory and dining provision, less time wasted by students queuing, softer peak demand for staff working at the refectory, etc.

The group also agreed that the shortage of refectory and dining space will partially be solved by the staggered lunch break, partially solved by creating additional flexible spaces that could be used for informal study and dining, and partially offering some other food stations where the students can purchase the meal from dislocated in the campus.

PM also recapped observations from previous discussions and the site visits conducted on the prior day especially the site constraints and the generous classrooms at the LBHS site.

A discussion took place on the relationship between the number of forms of entry and the average class size. The potential costs and benefits of moving from 17 FE to 20 FE were debated and the eaching team and PM agreed that the education evidence for groups of 24 versus 26 or 28 were mited. MF suggested that the team should come up with the best proposals for young people and hat if maintaining a smaller average group of 24 did not lead to better outcomes then the committee
should hear the evidence and an alternative average size could be adopted.
he potential future shortage of outdoor spaces was also discussed and member's views was sough about this constrain. It was acknowledged that on Beaucamps and potentially at the St Sampson's site there will be greater need of outdoor sports facility when the new system is established. GAS mentioned that at the Beaucamps site there is already a plan to purchase some nearby land to enlarge the sport provision. PM expressed that the purchase of additional land to be used for sport provision was a good idea which the school will benefit from. In addition, he suggested that a further option was to share nearby sport facilities with the community. He cited a number of UK examples 26
where colleges use excellent local club facilities where these are of a higher quality than on site provision.
PM asked the President of Education Committee what physical changes, apart from more teaching accommodation, he expected to be delivered as part of the one school two site vision. MF responded hat the new school must improve the quality of students' experience - he noted that this was on key toncern of pupils from SS school. The community must see a new school on two sites rather key concern of pupils from SS school. The community must see a new school on two sites rather
than two mergers from four schools to two. He noted that the difficult snagging issues at SS had now largely been overcome but that the site did not appear to perform as well as LBHS. The need to create more smaller clusters of space to break up the SS site was noted. The need for good socia spaces was also noted. The need at LBHS not to damage what is working well at that site was noted and achieving the right balance of new classroom sizes and types was considered important.

SR reported to the group that new school should offer social spaces of which the two sites are R reported to the group that new school should offer social spaces of which the two sites are he school. Short term wins at SS were discussed - opening the performance/assembly hall for learners at break-time; MF asked why this could not be done now? PM asked what the interface will be between the 11-18 school and the SEN centre at the St
Sampson's site. MF replied that there is a need to maintain a relationship between the two schools and his preference was for the SEN centre not be relocated elsewhere but to remain on the site as part of the wider education offer to young people. non-teaching spaces.
We observed that the Baubigny building contains the secondary school and the SEN centre. The building is divided into sectors ranging from A to J .

7.1 External Building

We observed that the building externally is generally in very good condition atthough there was taining on the yellow sto-render over the main entrance area. It was also noted that the main ouble-entrance doors were not working, that the blockwork at the rear of the building appeared to absorb moisture and that paint was flaking off a large number of steel columns.

We visited also the SEN centre (Le Murier School) which is located to the east far end of the Baubigny building and it occupies sector G, H and J . Here below some examples of spaces within he SEN centre.

Top left - SEN refectory and dining area, top right - example of SEN classroom, bottom left

Key considerations from this part of the visit are:
based on albeit limited first observations, there appear to be a large proportion of the learners sites in a mainstream setting

- hles nail ainsteam soling, mere will always be a need for some specialist facilities for learners with the most acute physical or learning needs - whether these could be accommodated at one of the othe here are large numbers of spaces
- there are large numbers of spaces at the Le Murier site that could be easily converted to accommodate an expansion on mainstream school numbers;
Le Murier school is connected via a corridor to the main SS school building and could easily convert to being a part of the main school - potentially as a Sixth Form wing.
7.2 General Purpose (GP) Classroom

We observed that all general purpose classrooms have an area between $55 \mathrm{~m}^{2}$ and $60 \mathrm{~m}^{2}$. They are generous rooms and we observed that are laid out in a mixture of rows or small groups and the seats count was around $26-28$ chairs in each room. Furthermore, the rooms provide generous space for count was around $26-28$ chairs in each room. Furthermore, the rooms provide generous space for
storage too which is located at the back and/or at the front of the classroom. The use of single desks and the choice of seating furniture made the rooms appear more primary like and less mature than the double table and black seats at the LBHS school site,

7.3 Science Laboratories

We observed that the five science laboratories on site have an area of $90 \mathrm{~m}^{2}$ and one is $80 \mathrm{~m}^{2}$. We have observed that 30 students can seat in this specialist spaces at all times however, the perimete workstations allow for 22-24 learners to complete practical work (we understand two pupils per comments made above in respect of LBHS science spaces and their layout also apply here

Example of science laboratories

he same time.
apply here.
7.4 Food Technology Room

We observed that the food room is a large space and it has an area of $107 \mathrm{~m}^{2}$. This specialist space urrently includes No 8 workstations that allows it to accommodate 16 students (wwo stude tation) operating on kitchen equipment at the same time. Options to extend that space to 18 or 20 learners were identified on site.

Food tech room

7.5 Design and Technology Workshops

We observed two D\&T workshops (called mult-materials rooms) both with an area of $102 \mathrm{~m}^{2}$. In on orkshop we counted $N .4$ benches that can accommodate $\mathbb{N}^{\circ} 4$ students each and therefore we assume that only 16 students can undertake specialist activities at the same time. One room had its wn discrete IT area off the workshop which appeared a poor use of space; across the corridor similarly sized IT room was accessible from the workshop or the corridor.

7. 6 Refectory and Dinin

We observed a relatively small space allocated for dining space within the refectory. We have estimated that c100 students can be seated within the refectory area at the same time and, when the covered courtyard area is included, the number rises to c200 students. We noticed that the shape of the counter creates congestion and a long queue along the corridor.

Unlike LBHS the assembly hall is not used at lunch time; its use is reserved for performing arts. This creates a large under-used space at the centre of the campus which do not consider to the most ptimal use of this space.

Refectory, dining space and covered courtyard layout on lunch time

7.7 Circulation

We observed that the width of the corridor ranges from a minimum of 1.80 m at its smallest to greate han 4.00 m at its widest. As result of the comb-shaped building, there is only one corridor between
unning along the length of the building with teaching wings with circulation off this. This means that all learners are moving up and down the one corridor space at break and lunch times which make it feel busier and at times cramped space (even though the corridor is wide). At 4.0 metres the width is not sufficient to be used for informal teaching but we noted many students sitting on the floors in he corridors and a the bottom of stairs eating their lunch. If learner numbers are to increase further here is a pressing need to provide more appropriate lunch time and break time space.

Examples of circulation spaces (top left - large corridor $>4 \mathrm{~m}$ on the first floor of block A , to right - corridor in Block \mathbf{G}, bottom righ

7.8 External Spac

We observed that the site is on a larger and flatter footprint than the Beaucamps site. There is more external space and due to the comb-shaped building there are a number of small three sided courtyards between the buildings which further open out to the MUGA pitch areas. We also observed on the rear of the building large external sport facilities and playing fields. The image below shows, potential to introduce LBHS style landscaping into these spaces. The option of creating a covered cloister at the back of the building to help disburse the flow of learners is also worthy of further consideration.

Rear of the building, sport facility and greenfield (below)

7.9 Parking Spaces

We observed that there are two car parks both located at the front of the site. One is dedicated to the secondary school and the second one to the SEN centre, however, we have not counted the current capacity. We suggest that a parking survey be undertaken and a future travel plan be
developed to understand the current capacity of the space for both car and scooter parking as a esult of the planned increase in pupil places. We also observed that when sixth form students will be on this site, there is more need for parking spaces - and especially scooter parking due to the oural increase of theeds and this issue needs to be factored into the future external space planning on the site.

Aerial view of the two parking areas. (source GoogleMap)

9.0 Meeting outcomes

9.1 Key Points

位ion is:

- to create "One School - two sites" to replace the current three 11-16 schools and one grammar school;
- both sites will offer 11-18 teaching as discrete on-site provision
- an improvement in the quality of students experience is fundamental;
ap equal eve are different in physical form;
integration of the sixth form acivu costraints in both sites to ace; and
boin sites to accommodate a growth in the students number is required.

9.2 Questions to address:

a) Number of Forms Entry and sub-division across the two sites - 16 ($8+8$ OR $9+7$); 17 ($9+8$) $18(9+9,10+8), 19(10+9), 20(10+10,11+9)$ form entry \& cost implication;
, 6 \& 30 max, 28 \& 30 max: there are efficiency \& cost implications of these choices;
Chat is the "right" group size and number of forms of entry in order to balance creating an efficient and effective school with the desire to improve the school utilisation, minimise (and quality of the staff working environment?
d) How can the spare space in some teaching rooms be better utilised
e) Does the Beaucamps site comply with BB 103 at the current time for internal and for externa space requirements - there is a need to complete a space analysis (BB103 based top-down) of the Les Beaucamps site;
Will the Beaucamps site comply with BB103 when the new school system is in place (with more students from existing schools) and if not, how much extra space is needed?
g) Does the St Sampson's site comply with BB103 at the current time for internal and for externa space requirements? This question can be answered via a space analysis (BB103 based top-down) of the St Sampson's High School only, AND a space analysis (BB103 based top down) of the whole Baubigny site (St Sampson's + SEN) with the assumption that SEN activities are relocated elsewhere.
h) The potential number of specialist spaces needed (science labs, art rooms, kitchens) based nemparing and timetable needs to be determined and agreed. We will do this Sampson's) at current and futurests against the two chosen sites (Les Beaucamps and S brief and a space-type growth accontent numbers forecast and to establish a resultant space brief and a space-type growth accommodation schedule,

What estate interventions need to take place at the St Sampson's site to accommodate tuure numbers and requirements e.g. we know intervention is required at the St Sampson's site to improve and increase circulation spaces to cope with future increase in student numbers?
i) What estate interventions need to take place at the Beaucamps site to accommodate future

What will be the efter
entries rise due to retention of more sixth form activities on site? Will the number of sixth form Is there an option to have an unequal forts in school and fewer moving to the GFE college? Is there aply to have an unequal form of entry between the two sites based on curren m^{2}) with a higher number of form entry in SSHS rather than an equal split to minimise intervention?
m) How much space does all SEN need based on special needs students requirements?
n) How much space do higher needs SEN learners need based on high needs special needs How much space do high
o) Can SEN be relocated based on scenario (i) or (i)
p) Could SEN learners with less complex needs be accommodated in the two mainstream school sites in the future?
a) What additional external space is needed to accommodate outdoor activities offered by the School if BB 103 requirements are not likely to be met? Are alternative community use space ocated near to the schools a more suitable option to plug any external space need gap?

ANNEX 3 - NOTES OF MID PROJECT REVIEW MEETING ON 6 NOVEMBER 2018

Annex 3 -

States of Guernsey - New School 11-18

Tuesday 6 November 2018
 09:30-11:30

Attendees
shley Dupre, (AD) (Head of EDP projects)
Peter Marsh, (PM) Client Directo
Michael Paltrinieri (MP), Space Analys

to be an improvement in outcomes. It was then agreed that the baseline
scenario to be adopted is a scenario to be adopted is a group size of 26 students. The analysis
based on the impact of moving to groups of 28 students will be added to the main report as appendix -this could he students will be added capacity for peak years.

In the context of the class size modelling (24, 26 and 28) AD asked PM to add in the report a narrative about the evidence around students results in groups of 28 or 26 compared smaller groups of 24 . PN
expressed some concern that the PMc commission was focused on space planning and that we should take care to avoid giving broader education policy advice that others appeared competent to provide. It was agreed thy

It was agreed that it wirl be for the committee to decide which group size would fit for purpose the new school system.
$4 \quad$ Findings

MP asked whether the co mitee wil accept a different number of form of entry across the two sites? AD confirmed the position is for two
schools of the same size and that the Committee had confirmed these to be 2×10 FE ($11-16$) schools.
AD reported that the committee is keen to take forward site/building intervention on both sites to ensure that both are seen as new schools, not be effective in creating the right sense of these being two new schools.

AD asked that PMc highlight in their report whe
evidence for flexible uses of spaces in terms of

- capacity - new teaching spaces will be designed following llow float in future students number 30 stude having all spaces with same capacity. They will still be around 10% smaller than existing rooms; and,
- uses - some informal spaces can be multi-purpose such as compensate for any existing over supply of teaching space and maintain the overall net area within the suggested range
- that as many of the larger specialist rooms (science, art) ar
being planned to be accommodated in the existing buidin ensure faculty suiting and making better use of the current oversized rooms
MP introduced the analysis completed to date and he showed the firs cut findings. MP reported that the model PMc has developed uses the

Schedule of Accommodation (SOA) that was shared by the curriculum team during the PMc visit dated $23 \& 24 \mathrm{O}$
adjusted to allow for a range of scenarios.

The results adopting BB 103 were discussed and it was agreed to extend he analysis by adding a comparison between the space require based on both BB103 and BB98 (the latter was used as guideline for he design of the existing builidings) and informed the current spaces created, AD asked PMC to show what the two guidelines recommend based on:

- current student numbers on site (470 and 675 students);
capacity designed for the building adjusted to the guernse
factor (660 and 720 students); and
confirmed that the capacity of the
AD confirmed that the capacity of the Les Beaucamps site is $\mathbf{c} 800$
students based on current area and the Guernsey factor) and the capacity of the UK model (660 with the students based on current area and the UK model (720 with the Guernsey factor)
PM highlighted to AD that the overall results shown for the require eaching area have been adjusted to take consideration that some G classrooms and IT suites are oversized due to prior design decisions. D requested that MP show both "raw" and "adjusted" required areas an additional column to more clearly state the surplus of existing
teaching spaces when compared to the suggested room sizes in BB103.
MP showed that some oversized teaching spaces can be converted to accommodate a different space type. MP noted that IT rooms in bot uggests an area of 62 m . General purpose classrooms are also versized and they are big enough to accommodate IT provision. These considerations suggests that some existing classrooms can be
converted into IT suites, the now avaiable IT suites can be converted in science laboratories to accommodate some of the required spaces. Ar studios also could be converted into science labs and new art sludis an be created elsewhere in a new building. Athough very useful, it was agreed that dese consideration should not be taken into detailed zoning the design stage. The inclusion of a table setting out current use current areas allernaive uses within he same areas would, howeve e very helpful.

The space for administration and staff was discussed. MP showed that he model (SoA) is currenty assuming GP classrooms use frequency between 90 and 95%. It was noted that teachers are timetabled for 2
capacity around 12 staff at the same time. It was therefore agreed tha
No 1 PPA room should be provided in each site of 60 m2. It was agreed that at SS there are many spaces for PPA including the large staff room which could easily have additional study/workstations installed. At LB
there is only one staff room and it is much smaller than the one in SS there is only one staff room and it is much smaller than the one in SS
because the original staff room had been converted to the SEN room. PM confirmed the need for additional staff break out work space for PPA activities in the LB site.

At the end of the discussion, the model was further reviewed and the
following points were agreed to be factored in and/or adjusted in the following points were agree:
analysis at the next stage:

- Add to the overall forecast number of students the number of SEN students that can
discussed above;
discussed above; \quad accommodated in the mainstream school as
y13 a proportion of GFE students (between $15-25 \%$ this is yN and y13 a proportion of GFE retained in the school when sixth form is on site (as a result of improved progression and/or the 6 FC offering classroom based BTEC level 2 qualifications);
that will enrol in the new school as students a portion of studen provided (starting in 2019/20 for Year 7 only)
- Show the differences in terms of area and number of space
 another site;
- Run two parallel models: one using the BB103 guidelines referred to planning a secondary school and the other that will consider the secondary school formula for the lower school and the sixth
formula for the $16-18$ students based on forecast numbers;
Express the potential use of other spaces for dining
assembly hall even if, in SS is more difificult to connect the two spaces without intervention
- Run a parallel model which uses BB98 guidelines in order to provide a more realistic comparison with the base position (these
buildings were designed according BB98 standards and Guernsey factor);
- Run three models of all analysis using group sizes of 24,26 and 28 group size of 26 in the body of the report,
- Add a line to the summary tables which will show the "raw" teaching area required and the "adjusted" teaching area required to take - Reconcile the results obtained from the SoA with the suggested area adopting the BB103 guidelines.

